A SHORT PROOF OF THE TRIANGLE INEQUALITY FOR THE PRETENTIOUS METRIC

STEVE FAN

Abstract. Let $\mathbb{U}(\mathbb{N})$ be the set of all complex-valued multiplicative functions f with $|f(n)| \leq 1$ for all $n \in \mathbb{N}$. The pretentious "metric" on $\mathbb{U}(\mathbb{N})$ over an interval $I \subseteq[1, \infty)$ is defined by

$$
\mathbb{D}(f, g ; I):=\left(\sum_{p \in I} \frac{1-\Re(f(p) \overline{g(p)})}{p}\right)^{1 / 2}
$$

The author gives a short proof of the following triangle inequality:

$$
\mathbb{D}(f, g ; I)+\mathbb{D}(g, h ; I) \geq \mathbb{D}(f, h ; I)
$$

for any $f, g, h \in \mathbb{U}(\mathbb{N})$.

1. Introduction

Let $\mathbb{U}(\mathbb{N})$ be the set of all complex-valued multiplicative functions f with $|f(n)| \leq 1$ for all $n \in \mathbb{N}$. The pretentious "metric" or "distance" on $\mathbb{U}(\mathbb{N})$ over an interval $I \subseteq[1, \infty)$ is defined by

$$
\mathbb{D}(f, g ; I):=\left(\sum_{p \in I} \frac{1-\Re(f(p) \overline{g(p)})}{p}\right)^{1 / 2} .
$$

This quantity satisfies the following triangle inequality [1]:

$$
\mathbb{D}(f, g ; I)+\mathbb{D}(g, h ; I) \geq \mathbb{D}(f, h ; I)
$$

for any $f, g, h \in \mathbb{U}(\mathbb{N})$. As noted in [1], this follows from the inequality

$$
\begin{equation*}
\sqrt{1-\Re(z)}+\sqrt{1-\Re(w)} \geq \sqrt{1-\Re(z w)} \tag{1.1}
\end{equation*}
$$

for $z, w \in \mathbb{C}$ with $|z|,|w| \leq 1$. We shall give a short proof of (1.1).

2. Proof of (1.1)

Squaring both sides of (1.1) we see that it is equivalent to

$$
(1-\Re(z))(1-\Re(w))+2 \sqrt{(1-\Re(z))(1-\Re(w))} \geq \Im(z) \Im(w),
$$

where $z, w \in \mathbb{C}$ with $|z|,|w| \leq 1$. Thus (1.1) follows from

$$
\begin{equation*}
(1-\Re(z))(1-\Re(w))+2 \sqrt{(1-\Re(z))(1-\Re(w))} \geq|\Im(z) \Im(w)|, \tag{2.1}
\end{equation*}
$$

where $z, w \in \mathbb{C}$ with $|z|,|w| \leq 1$. This inequality is trivial if $z \in \mathbb{R}$ or $w \in \mathbb{R}$. Let $z=A e^{i \theta}$ and $w=B e^{i \varphi}$, where $A, B \in(0,1]$ and $\theta, \varphi \in(-\pi, \pi) \backslash\{0\}$. Then we may rewrite (2.1) as

$$
\begin{equation*}
\left(A^{-1}-\cos \theta\right)\left(B^{-1}-\cos \varphi\right)+2 \sqrt{A^{-1} B^{-1}\left(A^{-1}-\cos \theta\right)\left(B^{-1}-\cos \varphi\right)} \geq|\sin \theta \sin \varphi| . \tag{2.2}
\end{equation*}
$$

Clearly, the left side of (2.2) is a decreasing function of A and B. Hence it is sufficient to prove (2.2) under the additional assumption that $A=B=1$. In other words, we need only to prove

$$
(1-\cos \theta)(1-\cos \varphi)+2 \sqrt{(1-\cos \theta)(1-\cos \varphi)} \geq \sqrt{\left(1-\cos ^{2} \theta\right)\left(1-\cos ^{2} \varphi\right)}
$$

whenever $\theta, \varphi \in(-\pi, \pi) \backslash\{0\}$. Canceling out the factor $\sqrt{(1-\cos \theta)(1-\cos \varphi)}$ on both sides we see that the inequality above is equivalent to

$$
\sqrt{(1-\cos \theta)(1-\cos \varphi)}+2 \geq \sqrt{(1+\cos \theta)(1+\cos \varphi)} .
$$

This inequality is trivial, since the right side never exceeds 2 . This completes the proof.

References

[1] A. Granville and K. Soundararajan, Pretentious multiplicative functions and an inequality for the zeta-function, Anatomy of Integers, 191197, CRM Proc. Lecture Notes, vol. 46, Amer. Math. Soc., Providence, RI, 2008.

Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
Email address: steve.fan.gr@dartmouth.edu

